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Abstract Structural branching of graphs has been investigated extensively. Yet, no
method/model has yet been developed which captures all aspects of branching mean-
ingfully. Another shortcoming of nearly all related work in this area is the fact that
only small sets of example graphs have been used to perform those studies. Instead, we
investigate structural branching of graphs statistically by using large sets of exhaus-
tively generated graphs. Our findings explain some of the limits of existing branching
measures as well as the search for novel branching measures by using correlation
analysis.

Keywords Molecular branching · Graphs · Graph analysis · Quantitative graph
measures

1 Introduction

Examining complex structural features of graphs is a still ongoing problem in complex
network analysis and has been investigated for several decades [10,13,28]. Nowadays,
graph analysis can be divided into two major categories: Descriptive graph analysis
[10,13,28] and Quantitative graph analysis [4,5,15,34]. The former relates to describe
and characterize graphs by using structural properties. The latter deals with quantifying
structural information of graphs by using certain measurements.

In this paper, we focus on aspects of quantitative graph analysis namely related to
the structural interpretation of quantitative network measures [4,18]. Exploring this
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problem in general is still intricate as numerous graph measures have been developed
whose properties are unexplored [18]. When focussing on information-theoretic graph
measures, Dehmer [14] made already an attempt to classify the measures based on
their structural interpretation. One important example thereof is structural branching
of graphs which we are going to investigate in the present paper.

The main contribution of the paper is twofold: First, we perform a large-scale
analysis by using exhaustively generated graphs to investigate structural branching.
The idea to perform this study stems from the shortcomings of existing related work
in this area: only small example data sets have been used and no rigorous statistical
analysis of the problem has been yet performed. Second, we examine already existing
measures towards their ability to detect branching meaningfully and discuss the limits
of already existing branching measures/models by employing correlation analysis.
Also, we find measures which turned out to be suitable branching measures but they
were not identified as such before.

2 Related work

The problem of investigating branching of graphs has been explored graph-
theoretically as well as by using so-called topological indices, see, e.g., [6,8,9,40].
An early attempt by using graph-theoretical and quantitative methods to quantify the
degree of branching of graphs is due to Randić [40]. Randić focuses on trees consisting
only of vertices of a degree not larger than 4, which correspond to the topology of
alkane hydrocarbons. Randić notes that an intuitive treatment of branching is ambigu-
ous even when the discussion is confined to relatively simple systems, see [40]. Then he
proposed a topological descriptor χ , called branching index to formalize the concept
[40]. χ has been designed to adhere to a conceptually simple ordering scheme which
Randić assumes to be associated with branching, based on a binary label derived from
a canonicalization of the adjacency matrix. In support of the suitability and utility of χ

as a branching measure, Randić points out that it is usefully correlated with molecular
properties such as the boiling point, and that it is minimal for a star graph and maximal
for a path graph.1 Despite the lack of a consensual definition of branching, these two
aspects are also commonly found in the works of other authors. χ is also found to
behave similarly to the Wiener index W [44] and Hosoya’s Z [29], which Randić
also considers theoretical indices of branching. Nonetheless χ has not been accepted
as the one descriptor which defines branching, which is reflected in its renaming as
connectivity index [43] in the scientific literature.

The Wiener index prominently appears in the papers on branching by Bonchev
[6] and Bonchev et al. [8,9,7]. In [8], the authors numerically compare some existing
indices (W, Z , χ and the largest eigenvalue of the adjacency matrix λ1 [27]) and three
newly introduced descriptors Ipc, I E

D and I E
W with relation to branching. A major part

of the paper is concerned with the construction of a set of rules on branching (aided

1 The star graph is the tree of order N with N − 1 vertices of degree 1. The path graph is the tree of order
N without vertices of a degree greater than 2.
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by an analytical study of the behaviour of W and, to a lesser extent, I E
D , both of which

are assumed to decrease as the degree of branching increases), for example that

[i]n a tree having a constant number of vertices, the branching increases when
the number of branches attached to a given vertex increases owing to the chain
decrease.

These rules are introduced in isolation from each other instead of within a unifying
framework, which makes them potentially useful for a characterization of branching,
but does not constitute a formal definition of the concept.

The theory was further developed and generalized in [6] to eliminate some of the
strict preconditions for the applicability of the branching rules. It was taken up again in
[7] with a focus on long-chain branching patters in polyolefins. In this work, the relative
importance of the influencing factors on the overall degree of branching was found to
be number of branches � branch length > branch centrality ≈ branch clustering >

total molecular weight ≈ backbone molecular weight, again based in a large part on
the hypothesis that an increase of branching is followed by a decrease of the Wiener
index.

Bertz [2] has been critical of attempts to create a model of branching from complex
theories such as topological indices, calling these approaches forced fits. The rule-
based characterization of branching by Bonchev et al., specifically [8], is subject to
particular scrutiny. As an example for Bonchev and Trinajstić’s reliance on a precon-
ceived ‘mathematical formalism’ he highlights the targeted design of their branching
rules to bring them into accordance with the information-theoretic measures I E

D and
I W

D they have introduced. In Bertz’ opinion, the criticized work illustrates the impor-
tance of letting the conceptual model dictate the mathematics and not vice versa.

Bertz instead offers two axioms and uses them to develop a mathematically
grounded theory which does not rely on an absolute quantification of the degree
of branching. He instead proposes a scheme which establishes a total order on the
set of trees with regard to branching, which he considers superior to an earlier par-
tial ordering scheme by Gutman and Randic [23] in which many structures remain
‘un-comparable’. The strategy of this work is based on synthesis, the creation of com-
plex systems from simple ones, which the author argues is a foundational concept
in chemistry and should therefore be at the heart of defining ‘the logical structure of
chemistry’.

Perdih and Perdih [39] employ the statistical procedure of principal component
analysis (PCA) to find a suitable reference property for the quantification of branching,
in the form of either a molecular property or a topological descriptor. Their analysis
was performed on five data sets, each containing between 18 and 40 trees representing
alkanes. The axes of the reduced information spaces resulting from the PCA were used
to find major influencing factors on branching in decreasing order of importance: the
number of vertices, the number of branches, the existence of vertex degree of 3 versus
4, and finally the location of the branches.

Despite the vagueness of the concept of branching, it is possible to find consensus
on some issues in the literature. For example, there is widespread agreement that some
topological descriptors can indeed be used to quantify the degree of branching of a
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tree to some extent, although not necessarily as the basis of an outright definition. For
example, Kirby [30] notes that it is unclear whether a single branching index that is
useful [can] be formulated [or whether] it should be accepted that several separately
applied elements of branching may be necessary.

The requirement for branching indices to assign minimum and maximum values
to the star and path graphs can be found frequently, for example in [8,19,40]. The
idea that the number of branches is the most important facet of branching (at least if
the number of vertices is constant) is also elementary enough to be found in several
places, such as [7] and [39].

Whenever topological descriptors were analyzed numerically, the analysis was
restricted to very small sets of graphs, containing e.g., 45 trees in [8] or 40 in [39].
Our own analysis uses much larger sets.

3 Methods

We have based our study on using exhaustive sets of trees of orders N = 15–20, which
in total contain 1,340,577 non-isomorphic graphs. The majority of the analysis was
performed on the 823,065 trees of order 20, while the other trees were mainly used
to get an understanding of the influence of the number of vertices on the descriptor
values. We have chosen to limit our investigation to trees because branching is a more
elusive concept in the context of cyclic graphs. Exhaustive sets were used to avoid the
issues of statistical significance and representatively generating random trees.

32 numeric values, 20 of them topological descriptors, were calculated for each of
these graphs. We then processed the resulting data for each descriptor according to
three criteria in order to identify which ones are associated with branching.

3.1 Generation of trees

The algorithm by Wright, Richmond, Odlyzko and McKay (WROM), originally given
in [45], has been used to obtain the exhaustive sets of trees. It is based on an earlier
algorithm for the generation of rooted trees by Beyer and Hedetniemi [3], whose
underlying idea is to enumerate valid level sequences (�1, �2, . . . , �N ), where �i is
the distance of the vertex i to the root, vertex 1 is the root (�1 = 0) and two vertices i
and j are adjacent if and only if �i + 1 = � j and there is no k (i < k < j) such that
�k ≤ �i .

The WROM algorithm uses the same concept, but also defines a canonical level
sequence representation for each free (unrooted) tree and skips all non-canonical items.
It thus generates each non-isomorphic free tree of a specified order in an amortized
runtime complexity of O(1). Our implementation was written in the Python program-
ming language as a generator function which yields NetworkX [26] objects.

3.2 Topological descriptors, elementary measures and Bertz ranks

The 20 descriptor values to be calculated for each tree were selected to capture dif-
ferent features of a graph (such as vertex degrees, distances and the eigenvalues of
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the adjacency matrix) and to comprise both descriptors with some known association
with branching as well as others. From the group of purported branching measures
these were:

• χ , the Randić connectivity index [40],
• W , the Wiener index [44],
• I E

D , the total information on distances [8],
• I W

D , the total information on the realized distances [8],
• λ1, the largest eigenvalue of the adjacency matrix [27],
• E , the graph energy [21], and
• B, the Bertz branching index [2].

B is characterized by very high degeneracy due to its very limited image of the
integers in [N − 2, N 2−3N+2

2 ]. For this reason, and motivated by its usage as the first
element in the lexicographical ordering scheme suggested in [2], we have defined an
extension that we will call the second-order Bertz branching index:

• B2(G) = B(G) + B(L(G))
1+B(L(SN ))

, where L(G) denotes the line graph of G and SN is
the star graph of the same order as G.

The line graph for a given graph is created by representing each edge from the
original graph as a vertex, and inserting an edge between two of these vertices if and
only if the corresponding edges from the original graph share an incident vertex.

The remaining twelve descriptors do not have a reputation of sensitivity to branch-
ing. They are

• Z2, the second Zagreb group index [25],
• MZI , the modified Zagreb index [37],
• VZI , the variable Zagreb index [37],
• AZI , the augmented Zagreb index [20],
• log PRS, the logarithm of the product of the row sums of the distance matrix [41],
• HA,2, the entropy with respect to the distribution of the eigenvalues of the adjacency

matrix [17],
• I V

orb, the topological information content [36],
• J , Balaban’s J index [1],
• OdC, the offdiagonal complexity [11],
• I f V , the entropy based on the j-sphere functional [12],
• I f C , the entropy based on the vertex centrality functional [12], and
• I f � , the entropy based on the degree-degree association functional [16].

I f V , I f C and I f � are parametric measures. For the coefficients used in the func-
tionals we have used an exponentially decreasing sequence ci = dei−1, where d is
the diameter of the graph. Furthermore, our basis for I f � is α = 0.5.

We also determined the ordering described by Bertz [2] for all trees, according to this
rule: Pairs of [graphs] are ordered by comparing the sequences generated by counting
the number of [edges] in the iterated line graphs so that the one which ultimately
dominates is the more branched.

Then for each of our trees, BR is its position in the ordered list of all trees of the
same order, such that BR is 1 for the least branched and maximal for the most branched
tree according to Bertz.
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Finally, the following elementary measures were used as readily interpretable quan-
tities with a relationship to branching:

• N , the number of vertices,
• T , the number of terminal vertices, i.e., those with a degree of 1,
• δmax, the maximum vertex degree,
• d, the diameter, i.e., the maximum distance between any two vertices,
• dBBmin,avg,max, the minimum, average and maximum distances between all pairs

of branched vertices, and
• dBCmin,avg,max, the minimum, average and maximum distances between all

branched vertices and the closest central vertex.

In these definitions, a branched vertex is a vertex of a degree greater than 2, and a
central vertex is one whose eccentricity (the greatest distance to any other vertex in
the graph) is minimal.

Again, a Python program was created and used to calculate these values. The code
heavily uses the NetworkX library as well as the NumPy package [38] for efficient
numerical computations. We originally planned to use the implementations of descrip-
tors written in the R programming language from the QuACN package [35] for the task,
but this implementation quickly turned out to be unacceptable in terms of computation
time for the present application.

3.3 Analysis

As we have seen, there is no single, well-established objective criterion for what
constitutes a good branching index. Our analysis is based on three main criteria, two
of which employ Spearman’s rank correlation coefficient ρ, whose definition was
taken from [33]:

ρ =
∑

i (xi − x̄) (yi − ȳ)
√∑

i (xi − x̄)2 ∑
i (yi − ȳ)2

,

where xi and yi are the ranks (the positions at which each raw value appears in the
non-descending sequence of the raw values) of the studied variables, and x̄ and ȳ are
the arithmetic means of these ranks.

The criteria are as follows:

1. Based on intuition and inspired by previous work by various authors (e.g., [8,40,
19]), we first demand that on a set of trees of the same order, a good branching
index attains one extreme value (minimum or maximum) for the path graph and the
opposite extremum for the star graph. We are less strict on the latter point because
one could conceivably argue that a graph more structurally irregular than the star
graph is in fact more highly branched, but failure to single out the path graph is
surely not acceptable for a branching index.

2. We expect a branching index to be favorably correlated to the number of branches
when the number of vertices is set to a constant. For this purpose the number
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of branches is straightforwardly defined as the number of terminal vertices T , as
proposed in [6]. We require at least |ρ| ≥ 0.7, preferably |ρ| ≥ 0.8, which can
be interpreted as ≥49 or ≥64 %, respectively, of the variance of the ranked index
values being explained by the ranked T values as per the coefficient of determination
[42]. Visual examination of the relevant plots is also used to confirm that a useful
relationship exists. This approach is also motivated by the literature, particularly
[7] and [39], where the number of branches has been found to be the most important
factor with an influence on branching.

3. On a more informal basis, the relationship between each descriptor and the Bertz
ordering scheme will be investigated, with a strong correlation again pointing to a
good measure of branching.

The necessary processing and visualization of the obtained data was done in the R
statistical computing language.

4 Results

4.1 Computation

All computations were performed on a PC, based on an Intel i3 CPU with a clock
speed of 2.1 GHz and 4 GiB of physical main memory, in a Debian GNU/Linux
environment. The full run of generating the trees and calculating all the values listed
in Sect. 3.2 has taken about 12 h of wall-clock time. This runtime could be drastically
cut by utilizing multiple processor cores, as the code at hand does not perform any
parallelization whatsoever.

The algorithm to produce the Bertz ordering scheme has turned out to be problem-
atic. While the comparison between two trees usually comes to a decision within few
iterations of line graphs, some pairs of trees require more steps and the computation of
vast line graphs with millions of vertices. This led to paging and therefore significant
computation times measured in tens of minutes.

4.2 Raw numerical data

A statistical overview of the descriptor values calculated on the sets of trees of the
orders 15 and 20 can be found in Table 1.

4.3 Extreme value criterion

Our analysis of the raw data based on all the individual tree sets (orders 15–20) has
shown that these indices do not take on a minimum or maximum for the path graph:

• I f � , although it has a maximum for the star graph.
• HA,2, although it has a minimum for the star graph.
• OdC, although it has a minimum for the star graph.
• I V

orb, although it has a minimum for the star graph. Its maximum value is shared by
many different trees, but the path graph is not among them.

123



812 J Math Chem (2014) 52:805–819

Table 1 Overview of the raw numerical data. N … number of vertices, x̄ … arithmetic mean, s … standard
deviation, ρT … rank correlation coefficient of descriptor and number of terminal vertices, ρBR … rank
correlation coefficient of descriptor and rank in the Bertz ordering

N = 15 N = 20

Descriptor x̄ s x̄ s ρT ρBR

I f V 3.81 0.02 4.22 0.02 −0.46 −0.52

I f C 3.74 0.04 4.15 0.04 −0.91 −0.94

I f � 0.72 0.61 0.63 0.56 −0.33 −0.29

W 369.26 45.55 796.14 97.83 −0.74 −0.75

χ 6.67 0.36 8.91 0.40 −0.92 −0.94

B 21.75 5.25 30.18 5.95 0.89 1.00

B2 21.81 5.29 30.21 5.97 0.88 1.00

λ1 2.42 0.19 2.51 0.18 0.74 0.92

E 16.17 1.22 21.82 1.36 −0.85 −0.85

HA,2 3.43 0.25 3.87 0.20 −0.80 −0.77

I W
E 281.48 31.09 564.18 52.44 −0.71 −0.69

I W
D 2410.79 284.63 5872.98 695.95 −0.75 −0.76

J 4.60 0.70 5.19 0.75 0.72 0.74

OdC 1.26 0.22 1.36 0.21 0.55 0.75

I V
orb 3.33 0.39 3.81 0.31 −0.71 −0.76

log PRS 83.69 2.68 125.46 3.54 −0.73 −0.74

Z2 78.85 13.69 111.52 17.00 0.87 0.96

MZI 3.41 0.35 4.51 0.39 −0.86 −0.83

AZI 92.87 12.09 130.49 13.87 −0.44 −0.40

VZI 8.17 0.70 10.99 0.77 0.86 0.83

• The Zagreb group indices MZI , AZI and VZI , although they have a minimum for
the star graph.

Because we consider it fundamental that any useful branching index singles out the
path graph as the least branched tree by not assigning some intermediate value to it,
we will not consider these to qualify.

Among the trees, the two functional-based entropy measures I f C and I f V are both
maximal for the path graph, but they take on their minimum values for branched trees
other than the star graph. We will keep this in mind since intuitively, the tree with the
largest number of branches might be considered the most highly branched, but we do
not immediately exclude them. The difficulty of analytically finding graphs for which
these entropies become minimal has been acknowledged in [32]. Among all graphs,
for example, I f V (with an exponentially decreasing coefficient sequence) becomes
maximal for a class of graphs called sphere-regular in the referenced paper.

The other indices studied, namely χ, W, I E
D , I W

D , λ1, E, B, B2, Z2, log PRS
and J , fully satisfy the criterion.
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Fig. 1 Left column Box plots of descriptor values for trees with a given number of terminal vertices T .
Right column Scatter plot of descriptor values against ranks in the Bertz ordering BR. The descriptor in the
top row is the maximum eigenvalue λ1, the one in the bottom row is the entropy based on the degree-degree
association functional I f � . Plots based on the data for all trees of order 15

4.4 Number of branches criterion

The analysis in this section is based on rank correlation between each descriptor
and the number of branches T (see Table 1), as well as plots such as those shown in
the left column of Fig. 1.

Unsurprisingly, there is overlap between the indices failing the extreme value cri-
terion and those with a particularly weak correlation to the number of branches:
I f �, OdC and AZI all have ρ < 0.6 with regard to T in the case of N = 20. This
suggests that these indices really do not usefully reflect the degree of branching of a
tree, thereby reaffirming the decision to not consider them further. I f V can also be
safely disqualified on that basis, at least with the chosen parametrization.

We also suggest that HA,2 and I V
orb can indeed be dropped based on the result from

the previous section. Although a general trend to take on lower values as the number
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of branches increases is recognizable for both of them, their relationships with the
number of branches are characterized by many outliers (and an unusual shape of the
correlation especially for HA,2, whose distribution of values for groups of trees with
the same number of branches behaves unpredictably in terms of average values and
variance).

Only MZI and VZI would appear quite suitable according to this correlation criterion
while not satisfying the extreme value criterion. We argue that it nonetheless remains
sensible to leave them out, considering their shared property of becoming extreme for
trees with an intermediate number of branches (e.g., a tree with T = 8 for the set of
trees with N = 20), and the fact that Z2 exhibits a similar distribution without this
issue.

We will also disregard B and B2. While they are correlated rather well to the number
of terminal vertices, they are useless as standalone indices due to their degeneracy, with
B taking on only 92 distinct values for the 823,065 trees of order 20. The B2 index we
have introduced experimentally fares only somewhat better with 4,083 unique values.

The ten remaining indices are all clearly correlated with the number of branches T .
In the following, the elements of the partition of an exhaustive set of trees by T (i.e.,
the sets forming the columns in the boxplots above) will be referred to as groups. This
is our interpretation of the findings:

• I f C and χ both exhibit numerically very strong negative correlations with T , with
|ρ| ≥ 0.9 for |V | = 20. For I f C , the per-group average values decrease almost
linearly as the number of branches increases. There is relatively little overlap of
values between groups for both I f C and χ . It is interesting to note that their perfor-
mance is similar despite their completely different definitions: χ is a degree-based,
non-information-theoretic descriptor, whereas I f C is an entropy measure built on a
concept of vertex centrality [12].

• Z2 is weaker in terms of its correlation coefficient with regard to T . As opposed to
the preceding two indices, it tends to grow with the number of trees. Its variance is
higher in groups of trees with many branches than it is for those with fewer; this is
a characteristic it shares with χ . It is nonetheless capable of separating groups to
an adequate degree.

• The spectral measure λ1 is clearly positively correlated with the number of branches,
but it does not separate the groups particularly well. E , which is also based on the
eigenvalues of the adjacency matrix, exhibits a much stronger negative correlation.

• Neither of the three distance-based measures W, I W
D and I W

E , previously investi-
gated by Bonchev et al. [8], has an outstandingly strong correlation to T . The same
is true for the other two indices that are based on distances, namely J and log PRS.

Supposedly, the main property through which the latter five descriptors are corre-
lated to the number of branches are the shorter distances in a more highly branched tree.
For example, the absolute values of the rank correlation coefficients ρd between each
descriptor and the graph diameter are consistently much higher than those between
each descriptor and the number of terminal vertices ρT for these indices (|ρT | around
0.72 and |ρd | around 0.92 for N = 20), while the opposite is true for the other
indices which satisfy this criterion. Moreover, we have employed partial correlation to
statistically remove the effect of d, using the partial rank correlation coefficient [33]
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ρ′ = ρx,y − ρx,zρy,z
√(

1 − ρx,z
2
) (

1 − ρy,z
2
)

(measuring the correlation between two variables x and y when the effect of a third
variable z has been removed). Indeed, this yields absolute values of ρ′ no higher than
0.35 for the distance-based indices paired with T when the effect of d is removed. For
comparison, |ρ′| values for χ and I f C are still above 0.8, even though these descriptors
are clearly also linked with d.

We have also calculated partial correlation coefficients to study the association
between the descriptors and other elementary measures (maximum degree δmax,
branch–branch distances dBBmin,avg,max and branch–center distances dBCmin,avg,max).
We hoped to find some obvious trends in this analysis, ideally such that there is little
correlation between an index and an elementary measure on the whole, but a clear link
when the effect of T is accounted for. Unfortunately, due to the strong variation of
tree structures within groups of constant T , the data obtained fails to strongly support
claims of this kind, although we could identify two trends: As the number of vertices
and terminal vertices remains constant,

• decreases in branch–branch and branch–center distances, as well as
• increases in the maximum vertex degree

generally lead to a change of descriptor value in the same direction as when branches
are added. In other words, if one were to attempt to derive a characterization of branch-
ing from a topological descriptor, it would be natural to argue that branching increases
as branches move closer together.

4.5 Bertz ranking criterion

For the investigation with regard to this criterion, we have again used rank correlation,
this time between each descriptor and the rank BR of the graph in the Bertz ordering
of all trees of the same order; see the ρBR column in Table 1. The relevant scatter plots
of these variables, two examples of which are shown in the right column of Fig. 1,
were also considered.

For most of the descriptors, the ρ values when paired with the positions in the Bertz
ranking BR are suggestive of a basic level of correlation with the positions in the Bertz
ordering. Based on weak rank correlations and scrutiny of the plots, we claim that I f V ,

I f � , HA,2, OdC, I V
orb and AZI are not linked to BR satisfactorily. I f � is notable for

its particularly chaotic-looking scatter plot (see the lower row of Fig. 1); this entropy
measure is notoriously difficult to explain in terms of intuitive structural properties
[31]. The perfect rank correlations for B and B2 are of course unremarkable, as these
descriptors form the basis for the initial two steps of the iterative ordering algorithm.

Z2, I f C and χ follow the ordering scheme especially closely. Conversely, the five

distance-based descriptors W , I W
E , I W

D , J and log PRS deviate a lot from an ideal
monotonic relationship, as do the remaining Zagreb group indices MZI and VZI . Out
of the two spectral measures, λ1 fares well, whereas E is less nicely associated.
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4.6 Remarks on the performance on the full set

The correlation between descriptors and T /BR is far weaker on the entire set of trees
of orders 15–20 than on the individual sets in which N is constant. B, B2, λ1, J and
Z2 can be said to somewhat retain their useful properties based on the ρ values and
plots, while this is not at all the case for I f V and χ . VZI also performs rather well
in this context, which is an interesting case in that we have not considered it as a
potential branching index due to its failure to single out the path graph and despite its
comparatively high correlation coefficient. The rest of the descriptors, including the
distance-based indices other than J , cannot be said to be associated with T in the set
of all trees.

The bad performance of the descriptors on the full set is caused by the different
ranges of the values of some descriptors for trees of different orders, which can be
seen to some extent in Table 1. Due to this property of many indices, we think that
normalization might be helpful to achieve better correlations in some cases. Especially
for the descriptors which have their extrema for the path and star graph, it should not
be difficult to re-scale their values to a common range such as [0, 1]. Whether or not
this leads to more desirable results is out of scope for this study.

5 Summary and conclusion

Based on our analysis, we have newly discovered a branching index, namely the
entropy based on the vertex centrality functional I f C , see [12]. To our knowledge, the
capability of this descriptor to capture branching has not been assessed previously.
Although I f C corresponds favorably to the number of terminal vertices, the distances
between branches and the Bertz ordering, its failure in singling out the star graph as the
most branched tree has to be noted as a major shortcoming. It would be interesting to see
how the behavior of the index would change if its parameters were chosen differently.

We have also found that χ fits our criteria very well, which ties in with Randić’s
original introduction of the descriptor as a branching index [40], even though it is
usually referred to as connectivity index in the scientific literature. The second Zagreb
group index, denoted here by Z2, has a definition very much like χ . This causes these
two descriptors to behave similarly, as already noted in [24]. Interestingly, Gutman et
al. do not consider Z2 to be a branching measure in this paper based on their numerical
analysis. This might be due to their restriction to trees with a maximum degree of 3, but
it is certainly also demonstrative of the arbitrariness of the many attempts to quantify
branching.

The basic suitability of W, I W
E and I W

D as branching indices can also be con-
firmed by our analysis, although they do not stand out in a way that would warrant
using them as a basis for a definition of branching (as Bonchev et al. have done).
Indeed, their performance is very similar to that of two other distance-based measures,
J and log PRS. We have seen that the main mechanism through which these descrip-
tors capture branching according to our criteria are the reduced overall distances in
the tree, and that they do not respond consistently to the number of terminal vertices
beyond this aspect.
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The widespread acceptance of the maximum eigenvalue λ1 as a branching index
(see, for example, [8,30]) also is not contradicted by our analysis. On the other hand,
the second spectral descriptor we have studied in this work, E , does not appear to be
typically seen this way. It is probably less useful than λ1 (an assumption we base both
on its irregular behavior visible in the plots against the number of terminal vertices
and the ranks in the Bertz ordering scheme), but we do think that it can be called a
branching index nonetheless.

The descriptors that we have not mentioned in this section do not seem to be
suitable as branching measures. Furthermore, most of the indices we did identify as
possible branching measures break down when one tries to use them to compare trees
of different orders. λ1, J and Z2 are exceptions to this rule.

The investigation of the relationship between topological indices and the Bertz
ordering scheme has been a new contribution of this work. We have found the order-
ing scheme to be an interesting idea with limited practical applicability due to its
computational cost. This makes the correlation between the ranks in the ordering and
some of the numerical descriptors potentially interesting.

Based on the differences between descriptors that are seen as branching measures,
the long-standing elusiveness of a precise definition of branching and the subjectivity
of the concept, we agree with Kirby [30] that it is dubious whether branching should
be considered as a single unified concept. It is probably more sensible to primarily
consider the individual features which can easily be quantified, such as the number of
and distances between branches, in terms of a multivariate concept of branching, in
a way that makes sense for the respective task. We nevertheless do not want to deny
the utility of topological descriptors in this context, as some of them clearly are linked
to branching in a major way, and it is usually more convenient to deal with a single
scalar value than with an entire system of interrelated properties.

6 Discussion

We have used three different methods of assessment to examine topological descriptors
with respect to branching, namely the extreme value criterion, the correlations with
elementary measures (based on the entire exhaustive sets as well as some pattern-
based sets of trees) and the association with the Bertz ordering. These approaches do
not have an immediately obvious common basis. Thus, it is reassuring that they are
compatible insofar as they have yielded similar results. We consider this a strength in
light of the lack of an accepted definition of branching, because the results can be seen
as mutually supportive of each other.

Furthermore, we believe that all three criteria individually constitute sensible char-
acterizations of branching. The extreme value criterion has been formulated by many
different authors and reflects an immediately plausible notion. The correlation with
elementary measures is also based on a widespread idea but allows for more fine-
grained statements on the branching behavior of a descriptor. And while it is not as
established, the Bertz scheme has the useful property of being a total ordering, an
advantageous trait when used in a correlation analysis, while fitting in nicely with the
other two criteria.
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The range of the studied trees is an interesting issue. On the one hand, trees contain-
ing vertex degrees higher than 4 do not correspond to chemical structures, but we have
nonetheless included them in our analysis. A comparison to results for a narrower set
of only chemical trees might give rise to insightful conclusions. On the other hand, it
would also be worthwhile to include cyclic structures, as far less work has been done
so far on the branching of cyclic graphs.

Regardless of the underlying set of graphs, one must take care not to overgeneralize
the results. It is natural to expect that the general behavior of the indices will likely
be comparable for trees of lower and higher orders, but since we have not given any
formal proofs, this cannot be guaranteed. It might seem unlikely for other tree sets to
yield significantly different results, but such a finding would not be unprecedented. For
an illustrative example of a surprising dependence on the number of vertices, see [22],
in which Gutman et al. show that the atom-bond connectivity index has a minimum
for the path graph for 4 ≤ |V | < 10, but not for |V | ≥ 10. Instead of repeating the
analyses from this work with different sets of trees, it would therefore be more useful
to study why and how the individual indices reflect branching in the way they do, so
that universally valid statements can be formulated.
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